Random Selection Of Microorganisms ; 5 Rhodospirillum rubrum - spiral shaped spirilla
1)Rhodospirillum rubrum :
Under aerobic growth photosynthesis is genetically suppressed and R. rubrum is then colorless. After the exhaustion of oxygen, R. rubrum immediately starts the production of photosynthesis apparatus including membrane proteins, bacteriochlorophylls and carotenoids, i.e. the bacterium becomes photosynthesis active.
The repression mechanism for the photosynthesis is poorly understood. The photosynthesis of R. rubrum differs from that of plants as it possesses not chlorophyll a, but bacteriochlorophylls.
While bacteriochlorophyll can absorb light up to a maximum wavelength of 800 to 925 nm, chlorophyll absorbs light having a maximum wavelength of 660 to 680 nm. R. rubrum is a spiral-shaped bacterium (spirillum, plural form: spirilla).
R. rubrum is also a nitrogen fixing bacterium, i.e., it can express and regulate nitrogenase, a protein complex that can catalyse the conversion of atmospheric dinitrogen into ammonia. When the bacteria are exposed to ammonia, darkness, and phenazine methosulfate, nitrogen fixation stops.
Due to this important property, R. rubrum has been the test subject of many different groups, so as to understand the complex regulatory schemes required for this reaction to occur.
It was in R. rubrum that, for the first time, post-translational regulation of nitrogenase was demonstrated. Nitrogenase is modified by an ADP-ribosylation in the arginine residue 101 (Arg101) in response to the so-called "switch-off" effectors - glutamine or ammonia - and darkness.
R. rubrum has several potential uses in biotechnology:
- Quantitative accumulation of PHB (poly-hydroxy-butric-acid) precursors in the cell for the production of bioplastic.
- Production of biological hydrogen fuel.
- Model system for studying the conversion from light energy to chemical energy and regulatory pathways of the nitrogen fixation system.
Classifications :
Kingdom : Bacteria
Phylum : Proteobacteria
Class : Alphaproteobacteria
Order : Rhodospirillales
Family : Rhodospirillaceae
Genus : Rhodospirillum
Species : R.rubrum
Introduction :
Rhodospirillum rubrum is a Gram-negative, mesophilicproteobacteria. Its optimal growth temperature is 25-30 degrees Celsius. It has multi-layered outer envelopes, which contain mostly unsaturated, but some saturated fats in its cell wall. R. rubrum is a spirilla, meaning it has a spiral-shape. It is polarly flagellated, and therefore motile. Its length is 3-10 um, with a width of 0.8-1.0 um.
Ecology :
Cell Structures & Metabolism :
R. rubrum is a versatile organism that can obtain energy through a variety of mechanisms. Respiration and photosynthetic mechanisms exist together and their activity depends upon the presence of light and energy. R. rubrum can grow in dark chemo-tropical environments with the presence of oxygen or can grow in a photo tropical environment without oxygen.
Photosynthesis in R. rubrum begins with the donation of a hydrogen from an organic substrate to an oxidizing substrance. Bacteriochlorophyll and cartenoids, the photoreactive pigments found in the cell membrane, are bound to chromatophores (Schachman, Pardee and Stanier, 1952).
Chromatophores are flattened disks that contain choline phospholipids, cardio lipin and galactosyl diglycerides (Benson, Wintermans, and Wiser, 1959; Benson 1961).
Additionally, chromatophores contain a complete electron transport chain that includes various cytochromes, flavin and pyridine nucleotides (Newton and Newton, 1957; Hulcher and Conti, 1960; Kamen, 1961). The cell membrane also contains machinery for ATP synthesis, including an ATP synthetase.
In the presence of oxygen, R. rubrum is able to aerobically respire using a traditional electron transport chain with NAD+/NADH as the primary electron carrier (Keister and Minton, 1969). Among the electron transport proteins is cytochrome C428 (Chance and Smith, 1955). Aerobic respiration, however, is inhibited by photosynthesis (Oelze and Weaver, 1971).
R. rubrum is also capable of anaerobic respiration. Its non-oxygenic terminal electron acceptors can include dimethyl sulfoxide and trimethylamine oxide.
The presence of these electron acceptors makes it possible for substrates such as succinate, malate and acetate to support growth of R. rubrum. These acceptors, however, are only approximately 33-41% as efficient as oxygen in terms of energy conservation (Schultz and Weaver, 1982).
Additionally, R. rubrum has the unique ability to oxidize carbon monoxide using carbon monoxide dehydrogenase. This oxidation pathway ends with the reduction and hydrogen and the production of hydrogen gas.
Without a terminal electron acceptor, R. rubrum completes mixed acid fermentation. The major products of pyruvate fermentation are acetate, formate, carbon dioxide and hydrogen. In the presence of bicarbonate ion, fructose is able to be fermented. The end products of this pathway are the same as that for pyruvate but with the addition of succinate and propionate (Schultz and Weaver 1982).
Besides having the ability to fix carbon dioxide (Schon and Biedermann, 1972), an identifying anabolic property of R. rubrum is its ability to fix nitrogen. Under dark conditions with the presence of fructose, R. rubrum uses nitrogenase to fix nitrogen gas to ammonium. It contains both Fe-Mo and Fe-only nitrogenases.
Pathogenicity :
- 2-(4-Bromoacetamido)anilino-2-deoxypentitol 1,5-bisphosphate, a new affinity label for ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. Determination of reaction parameters and characterization of an active site peptide .
- ADP-ribosylarginine hydrolases from mammalian tissues and Rhodospirillum rubrum exhibit three regions of similarity in deduced amino acid sequence.
- ATP synthesis and hydrolysis by Rhodospirillum rubrum chromatophores as well as the soluble RrF1-ATPase activity are inhibited by 4-chloro-7-nitrobenzofurazan (NBD-C1) in a dithiothreitol-reversible manner.
- Partition kinetics of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum.
- A B800-850 light-harvesting complex (also called LH2) deficient strain of Rhodospirillum molischianum was constructed by replacing a portion of the LH2 gene cluster by a kanamycin resistance gene cartridge.
Comments
Post a Comment